

MODULE 3

PODCAST:

HYDROGEN ON THE MOVE: FUEL CELLS REVOLUTIONIZING LOGISTICS

Welcome to a special episode dedicated to one of the most promising solutions in sustainable energy – fuel cells. Today we delve into their revolutionary role in logistics, discussing how they could change the way we think about transportation and distribution

Segment 1: The Hydrogen Revolution

Welcome to the first segment of our podcast, where we take a closer look at one of the most promising technologies in sustainable energy – fuel cells. But let's start with the basics: What exactly are fuel cells? They are advanced devices that convert the chemical energy of hydrogen directly into electrical energy.

This is done through an electrochemical reaction where hydrogen combines with oxygen from the air to create water. They work similarly to batteries, but unlike batteries, a fuel cell never runs out of power as long as it is supplied with hydrogen.

Importantly, the process is not only extremely efficient, but also clean. Fuel cells do not emit harmful exhaust fumes – the only byproducts are water vapor and heat. This makes them an ideal solution for many applications where traditional methods of generating energy would be too harmful to the environment.

But why are we focusing on hydrogen? Hydrogen has the potential to become a key element in meeting the world's ever-increasing energy needs. As an energy carrier, hydrogen can be used in a wide range of applications – from powering vehicles, to generating electricity, to storing energy from renewable sources such as solar and wind.

Moreover, hydrogen can play a key role in achieving climate goals, as its use can significantly reduce carbon dioxide emissions, especially in sectors that are difficult to electrify, such as heavy transport or heavy industry. The use of fuel cells can therefore not only reduce our environmental impact, but also enable a more efficient and sustainable energy economy.

In summary, fuel cells offer a promising technology that can transform many aspects of our lives, introducing more sustainable and ecological solutions. In the following segments, we will look at how these innovative systems are already being used in logistics and what benefits they bring.

Segment 2: Emission-free logistics

Fuel cell technology offers revolutionary opportunities for the transportation sector, particularly in the context of trucks and delivery fleets.

Imagine trucks driving on our roads emitting only water vapor instead of smoky exhaust fumes. This is possible thanks to fuel cells that convert the chemical energy of hydrogen directly into electricity. This means that hydrogen-powered vehicles do not generate local emissions of harmful substances, making them an ideal solution for cities and regions that are fighting smog and air pollution.

One of the biggest advantages of fuel cells in logistics is their ability to cover long distances without the need for frequent refueling. Unlike electric vehicles, which can take several hours to charge, hydrogen trucks can be refueled in minutes—comparable to traditional diesel trucks. What's more, these vehicles can offer ranges that match or even exceed those of traditional combustion vehicles, which is key in long-haul logistics.

However, implementing fuel cell technology in logistics is not without its challenges. One of the main obstacles is the lack of adequate hydrogen refueling infrastructure. Although hydrogen refueling stations are becoming increasingly available in many regions, there are still too few of them to handle large-scale logistics operations. Building new infrastructure requires significant investment – both public and private – and cooperation at various levels of government and across sectors.

Additionally, the initial purchase costs of fuel cell trucks may be higher compared to diesel or even electric vehicles. This is due to the smaller scale of production and the relatively high costs of components such as membranes and catalysts used in the cells. Nevertheless, considering the lower operating costs, including lower fuel consumption and lower maintenance costs, the total cost of ownership (TCO) of hydrogen vehicles may be competitive in the long term.

In short, fuel cells have the potential to radically change the face of logistics, offering cleaner, more efficient and quieter transport solutions. Work to overcome existing challenges is progressing, and with each passing year the technology becomes more accessible and economically viable, opening up new possibilities for a sustainable future for the transport sector.

Segment 3: Innovation and the Future

Now let's move on to the latest innovations and the future of fuel cells. The development of water electrolysis, which enables local production of hydrogen using renewable energy, opens up new opportunities for logistics companies. What's more, companies such as Nikola and DHL are already investing in hydrogen technologies, foreseeing their key role in the future of logistics.

Fuel cell innovations are driving the changes we can see in logistics and more broadly – in the entire economy. The development of water electrolysis is one of the key innovations that allows hydrogen to be produced directly from renewable energy such as solar or wind. This process, although known for a long time, is gaining importance thanks to new electrolyzer technologies that can work more efficiently and at lower costs than ever before.

Water electrolysis is fascinating because it allows for local, decentralized hydrogen production. This means that companies can generate hydrogen on-site, without having to transport it from far away, reducing logistics costs and the carbon footprint associated with transportation. In the context of logistics, this self-sufficiency in fuel production is revolutionary. It allows logistics companies to be independent from fluctuating fossil fuel prices and provides greater operational stability.

Equally important are the investments of large market players such as Nikola and DHL, which see the potential of hydrogen and fuel cells as a strategic element in the future of transportation. Nikola, for example, is developing hydrogen trucks that have the potential to revolutionize long-haul transport, offering not only ecological but also economically competitive solutions for the industry. DHL, in turn, is exploring the use of fuel cells in its delivery fleet, which could significantly reduce their CO2 emissions and operating costs.

These investments are also a catalyst for further research and development in the sector. More and more companies and research institutes are focusing on improving the efficiency of cells, durability and lowering the costs of hydrogen production. For example, current work on new materials for catalysts, such as those based on rare earth metals or completely new, synthetic materials, promises to lower the costs and increase the efficiency of electrolysis.

In addition, the infrastructure necessary for storing and distributing hydrogen is being developed. Modern storage methods, such as liquid hydrogen or metal hydrides, open up new possibilities for more efficient and safer use of this energy carrier.

In short, the future of fuel cells in logistics looks bright. Technological innovation, strategic investments, and growing support for renewable energy are all driving real changes in the way the world thinks about transportation and logistics. All for the benefit of the environment and the economy.

Segment 4: Beyond Just Transport

To conclude our podcast, let's consider the impact that fuel cells can have beyond the transportation industry. Their potential extends far beyond trucks and delivery fleets, into various sectors of industry and everyday life, where they can make a significant contribution to sustainable development.

Let's start with the warehousing sector. Fuel cell-powered forklifts are becoming increasingly popular in warehouses around the world. This solution offers a number of advantages over traditional electric or combustion-powered forklifts. Hydrogen-powered forklifts can be refueled in just a few minutes, a significant improvement over the long-term battery charging. In addition, fuel cells provide constant power throughout the entire operation, unlike

batteries that can lose efficiency as they discharge. This makes them ideal for busy warehouses, increasing productivity and reducing downtime associated with having to charge devices.

05

Another sector where fuel cells can play a key role is shipping. Ships using fuel cell technology for propulsion or as an auxiliary energy source can significantly reduce harmful emissions compared to conventional diesel engines. Furthermore, the use of hydrogen as a fuel in shipping can help reduce the global carbon footprint of the industry, which is responsible for a significant share of global carbon dioxide emissions.

Additionally, fuel cells are finding applications in the construction sector. They can power portable generators used on construction sites, where the demand for clean, efficient, and mobile energy is particularly high. These generators can operate in urban environments without the risk of air pollution, which is important in areas with restrictive emission regulations.

Finally, it is worth mentioning the potential impact of fuel cells on the development of renewable energy sources. Hydrogen produced by water electrolysis, using excess energy from renewable sources, can be stored and used during periods when renewable energy production is lower, for example on calm days or after sunset. This opens up new possibilities for stabilizing power grids and increasing the share of green energy in the global energy mix.

In summary, fuel cells have the potential to revolutionize many different industrial sectors, contributing to more sustainable and efficient use of resources. With a wide range of applications, these innovative systems can become a key element in the future of sustainable energy and industry.

End

Thank you for joining us today, and I hope our episode today has shed some light on fuel cells and their role in a sustainable future for logistics. We invite you to continue exploring this topic and join the conversation about the future that awaits us all. See you in the next episode!

Funded by the EU. The views and opinions expressed are solely those of the author(s) and do not necessarily reflect the views and opinions of the European Union or the European Education and Culture Executive Agency (EACEA). Neither the European Union nor the EACEA are responsible for them.

All results developed within the project "Professionals and their skills in hydrogen" are made available under open licenses (CC BY-SA 4.0 DEED). They can be used free of charge and without restrictions. Copying or processing these materials in whole or in part without the author's consent is prohibited. In the case of using the results, it is necessary to indicate the source of financing and its authors.