

MODULE 3

HYDROGEN LOGISTICS AND SUSTAINABILITY AND ECOLOGY

**How does hydrogen logistics affect the environment
and how can its negative effects be minimized?**

dr Aleksandra Ścibich-Kopiec

Co-funded by
the European Union

GREENHOUSE GAS EMISSIONS ASSOCIATED WITH HYDROGEN LOGISTICS

**Analysis of
greenhouse gas
emissions in
different stages of
hydrogen logistics**

**Comparison of
CO2 emissions
emissions for
“green”, “blue”
and “grey”
hydrogen**

**The global impact
of emissions
from logistics
processes on
climate change.**

GREENHOUSE GAS EMISSIONS ASSOCIATED WITH HYDROGEN LOGISTICS

Calculations of CO₂ emissions for different methods of transporting hydrogen over a given distance.

Case study: analysis of greenhouse gas emissions associated with hydrogen transportation in a selected logistics scenario.

Develop a logistics strategy that reduces greenhouse gas emissions for the selected hydrogen distribution model.

HYDROGEN AS A KEY ELEMENT IN THE ENERGY TRANSITION

Hydrogen is considered a fuel of the future - it is one of the solutions to **decarbonizing the economy**.

The EU plans to produce **10 million tons** of green hydrogen annually by 2030 and import another **10 million tons**.

Currently, **96%** of hydrogen is produced from fossil fuels (mainly natural gas), which emits about **900 million** tons of CO₂ per year.

TYPES OF HYDROGEN AND THEIR IMPACT ON THE ENVIRONMENT

Type of hydrogen	Energy source	CO ₂ emissions.	Production costs	Technology status
Gray hydrogen	Natural gas (SMR)	High (9-11 kg CO ₂ per 1 kg H ₂).	Low (€1.5-2.5/kg).	Mature, dominant
Blue hydrogen	Natural gas + CCS	Average (with CCS about 2 kg CO ₂ per 1 kg H ₂).	Medium (€2.5-4/kg)	In the deployment phase
Green hydrogen	Renewable energy (electrolysis)	No emissions	High (€4-7/kg)	Investment growth

HYDROGEN SUPPLY CHAIN - STAGES AND KEY CHALLENGES

Production

- RES water electrolysis (green hydrogen) vs. methane reforming (gray hydrogen).
- High cost of green hydrogen production.

Storage

- Possibilities: compressed hydrogen, liquid hydrogen, chemical form (such as ammonia).
- Energy losses - compression requires about 20% of hydrogen's energy, and condensation requires up to 30%.

Transport

- Gas pipelines, road transport, sea transport, pipelines - each form has its technological and economic limitations.

Distribution and use

- Applications in industry, energy, transportation and building heating.

MAIN SOURCES OF EMISSIONS IN HYDROGEN LOGISTICS

>>>>> CO₂ EMISSIONS IN DIFFERENT METHODS OF HYDROGEN PRODUCTION

Hydrogen production can be carried out by various methods that vary in terms of CO₂ emissions, **energy efficiency and production costs.**

Key technologies include gray, blue and green hydrogen, but new concepts such as turquoise and white hydrogen are also on the horizon.

GRAY HYDROGEN - A DOMINANT BUT CARBON-INTENSIVE PRODUCTION METHOD

Technology description:

- Produced by the Steam Methane **Reforming (SMR) process.**
- Natural gas reacts with steam to produce hydrogen and carbon dioxide.
- It currently accounts for more than **96% of the world's hydrogen production.**

Challenges:

- ✗ High carbon intensity - no CO₂ capture and storage.
- ✗ Dependence on fossil fuels - mainly natural gas.
- ✗ Low energy efficiency - high heat loss.

GRAY HYDROGEN - A DOMINANT BUT CARBON-INTENSIVE PRODUCTION METHOD

9-11 kg CO₂
per 1 kg H₂
(average 10 kg
CO₂).

Emissions

It accounts for
**2% of global
CO₂
emissions.**

**That's more than
the emissions of
the entire
aviation industry!**

Chemical industry
(production of
ammonia, fertilizers).

Refining
crude oil

**Examples of
application**

BLUE HYDROGEN - A STEP TOWARDS REDUCING CO₂ EMISSIONS

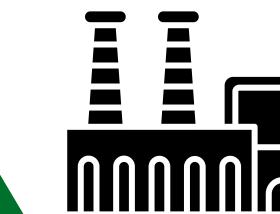
Technology description:

- Similar to gray hydrogen, but using Carbon Capture and Storage (CCS) technology - **CO₂ capture and storage**.
- CCS reduces emissions by **50-90%**, depending on the technology.

Challenges:

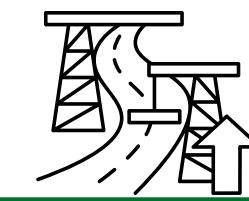
- ✗ CCS increases production costs by **30-50%**.
- ✗ Lack of developed infrastructure to transport and store CO₂.
- ✗ Need for large amounts of energy for CO₂ separation.

BLUE HYDROGEN - A STEP TOWARDS REDUCING CO₂ EMISSIONS.


No CO₂ emissions - if energy comes from 100% RES.

Emissions

In fact, emissions can come from the process of building photovoltaic, wind or electrolyzer plants (the so-called carbon footprint of the technology).


That's more than the emissions of the entire aviation industry!

H2 Green Steel (Sweden) - producing steel using green hydrogen.

Examples of application

HySynergy (Denmark) - a project to integrate electrolyzers with transportation infrastructure.

OTHER METHODS OF HYDROGEN PRODUCTION - FUTURE TECHNOLOGIES

Turquoise hydrogen (methane pyrolysis)

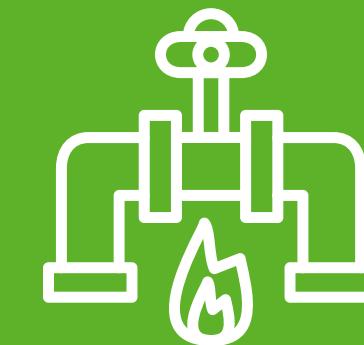
- Producing hydrogen from natural gas without emitting CO₂ - **solid carbon is produced instead.**
- **Emissions:** Close to zero (if energy comes from RES).
- **Challenges:** Still under development, limited scale of production.

Example Turquoise Hydrogen:

White hydrogen (natural sources of hydrogen)

- Naturally occurring hydrogen in the Earth's crust.
- **Emissions:** No CO₂ emissions if extraction is green.
- **Challenges:** Low scale of occurrence, lack of extraction technology.

Example White hydrogen:


COMPARISON OF EMISSIONS AND EFFICIENCY OF DIFFERENT HYDROGEN PRODUCTION METHODS

Type of hydrogen	Production method	CO ₂ emissions (kg per 1 kg H ₂).	Production cost (€ / kg)	Energy efficiency
Gray	Methane reforming (SMR)	9-11 kg CO ₂	1,5-2,5 €	65-75%
	SMR + CCS	2-4 kg CO ₂	2,5-4 €	55-65%
GreeN	Electrolysis (RES)	0 kg CO ₂	4-7 €	60-70%
	Pyroliza metanu	Close to zero	3-5 €	75-85%
White	Natural sources of hydrogen	0 kg CO ₂	Unknown	Unknown

CHALLENGES IN HYDROGEN TRANSPORTATION - GAS PIPELINE

CHALLENGES:

- Challenges Hydrogen causes hydrogen embrittlement - weakens pipelines, requiring special materials.
- High conversion costs - upgrading gas pipeline networks requires an investment of €5-15 million per km.
- Limited availability of dedicated pipelines - currently most infrastructure is adapted to natural gas.

BENEFITS:

- Ability to integrate with existing gas infrastructure.
- Potentially the cheapest form of long-distance hydrogen transportation.

EXAMPLE:

- The European Union plans to create a European Hydrogen Network by 2030, including 28,000 km of gas pipelines (70% are converted gas pipelines).

CHALLENGES IN HYDROGEN TRANSPORTATION - CRYOGENIC TANKERS

CHALLENGES:

- High energy consumption - liquefying hydrogen requires cooling to -253°C , which consumes up to 30-40% of hydrogen energy.
- Boil-off losses - liquid hydrogen undergoes slow evaporation, resulting in losses of 1-2% per day.
- Specialized cryogenic tanks - high price and limited number of manufacturers.

BENEFITS:

- Flexible transportation to locations without pipeline infrastructure.
- Relatively well-developed technology.

EXAMPLE:

- Air Liquide transports liquid hydrogen by cryogenic tankers to refueling stations in Europe.

CHALLENGES IN HYDROGEN TRANSPORTATION - LOHC

CHALLENGES:

- The process of hydrogen release (dehydrogenation) requires additional energy, which reduces efficiency.
- LOHC is in the testing phase - no widespread commercialization.
- Material issues - need to use appropriate chemicals for hydrogen storage (e.g., toluene, dibenzyltoluene).

BENEFITS:

- Can be transported at room temperature and normal pressure.
- Can use existing fuel infrastructure.

EXAMPLE:

- LOHC technology being developed by Hydrogenious LOHC Technologies - first pilot installations in Germany.

OPTIMIZING HYDROGEN TRANSPORTATION ROUTES USING AI AND BIG DATA

Technology application:

- **Artificial intelligence (AI)** analyzes hydrogen transportation data in real time and proposes the most efficient delivery routes, minimizing travel time and energy consumption.
- **Big Data** makes it possible to analyze large data sets related to weather conditions, traffic volume and the efficiency of different modes of transportation.
- **IoT (Internet of Things)** - smart sensors monitor pressure, temperature and energy consumption during hydrogen transportation, enabling optimal delivery management.

OPTIMIZING HYDROGEN TRANSPORTATION ROUTES USING AI AND BIG DATA

Challenges:

- Need for advanced digital infrastructure that integrates logistics systems across countries.
- High cost of AI and IoT deployment - investments in data analytics systems require large amounts of money.

Examples of implementations:

- **H2Haul project** - uses AI to optimize hydrogen truck transport routes in Europe.
- **Siemens Digital Logistics** - develops platforms to monitor hydrogen logistics in real time.

USE OF RENEWABLE ENERGY SOURCES IN HYDROGEN COOLING AND COMPRESSION SYSTEMS

Technology solutions

- **Solar-powered cooling systems** - reduces the consumption of fossil-fuel electricity in the hydrogen liquefaction process (-253°C).
- **Use of wind turbines to power hydrogen compressors** - reduces CO₂ emissions in the process of compressing hydrogen gas to 700 bar.
- **Intelligent energy management systems** - automatic regulation of cooling and compression processes based on the availability of renewable energy.

USE OF RENEWABLE ENERGY SOURCES IN HYDROGEN COOLING AND COMPRESSION SYSTEMS

Challenges:

- Lack of adequate RES-integrated hydrogen infrastructure in many regions of the world.
- Variability of renewable energy production - need for energy storage systems.

Examples of implementations:

- **H2 Green Steel (Sweden)** - a hydrogen steel plant using only renewable energy to produce and transport hydrogen.
- **HySynergy (Denmark)** - a project integrating RES electrolyzers with hydrogen transportation infrastructure.

MODERN CCS (CARBON CAPTURE AND STORAGE) METHODS IN HYDROGEN PRODUCTION

CO₂ capture technologies for hydrogen production:

- **Pre-combustion capture** - capturing CO₂ before fossil fuels are burned in the methane reforming (SMR) process.
- **Post-combustion capture** - technology used in refineries and power plants to reduce CO₂ emissions from fuel combustion.
- **CO₂ mineralization technologies** - conversion of CO₂ into solids (e.g., carbonates) for long-term storage.



MODERN CCS (CARBON CAPTURE AND STORAGE) METHODS IN HYDROGEN PRODUCTION

Challenges:

- **High capital costs** - CCS implementation increases the price of hydrogen produced from fossil fuels by 30-50%.
- **Limited availability of CO₂ storage infrastructure** - need to expand underground CO₂ storage.

Examples of implementations:

- **Northern Lights Project (Norway)** - transport and storage of CO₂ in undersea geological formations.
- **Shell Blue Hydrogen (Netherlands)** - application of CCS in the production of blue hydrogen.

HYDROGEN STORAGE - EFFICIENCY AND ENERGY LOSS

Hydrogen storage is one of the key technological challenges of its large-scale application. The efficiency of this process depends on the storage method, energy consumption and losses due to storage technology.

STORAGE OF HYDROGEN IN COMPRESSED FORM

Technology description:

- Hydrogen is compressed to **200-700 bar** and stored in high-pressure tanks.
- This is currently one of the most widely used methods for storing hydrogen, such as in hydrogen vehicles.
- It requires special carbon fiber and metal composite tanks that can withstand high pressure.

STORAGE OF HYDROGEN IN COMPRESSED FORM

Benefits:

- Technology well developed and commercially available.
- Rapid refueling of hydrogen in vehicles (e.g. trucks, buses, cars).
- Does not require cooling to extremely low temperatures.

Challenges:

- Energy losses: Compressing hydrogen consumes 15-20% of its energy.
- Safety: High pressure carries the risk of leaks and explosions.
- Large storage volume: Compressed hydrogen takes up much more space than liquid hydrogen.

STORAGE OF HYDROGEN IN COMPRESSED FORM

Application examples:

- **Hydrogen vehicles** - Toyota Mirai cars, Hyundai Nexo, Nikola trucks.
- **Industrial storage of hydrogen** in high-pressure cylinders.

THANK YOU FOR YOUR ATTENTION

Funded by the EU. The views and opinions expressed are solely those of the author(s) and do not necessarily reflect those of the European Union or the European Executive Agency for Education and Culture (EACEA). Neither the European Union nor the EACEA is responsible for them.

All results developed within the framework of the “Professionals and their skills in hydrogen sector” project are made available under open licenses (CC BY-SA 4.0 DEED). They can be used free of charge and without restrictions. Copying or processing of these materials in whole or in part without the author's permission is prohibited. If the results are used, it is necessary to mention the source of funding and its authors.

